ALTA  alpha
Public Member Functions | List of all members
rational_function_chebychev Class Reference

Detailed Description

This rational function uses Chebychev polynomials as the basis function for the numerator and the denominator of the rational function:

\( f(x) = \sum a_i p_i(x) / b_i q_{i}(x) \), with \( p_i = q_i\).

Chebychev polynomials can be defined using trigonometric functions: \( p_i(x) = \cos\left( i \; \mbox{acos}(x) \right)\). We use this formulation.

For more details see the addendum on Rational BRDF available at https://hal.inria.fr/hal-00913516

Author
Laurent Belcour <laure.nosp@m.nt.b.nosp@m.elcou.nosp@m.r@um.nosp@m.ontre.nosp@m.al.c.nosp@m.a>

#include <rational_function.h>

Collaboration diagram for rational_function_chebychev:
Collaboration graph
[legend]

Public Member Functions

 rational_function_chebychev (const alta::parameters &params, int np=0, int nq=0)
 
virtual rational_function_1d * get (int i)
 
rational_function_chebychev_1d

Update the y-1D function for the ith dimension.

Note
It will test if the 1D function provided is of the dynamic type
virtual void update (int i, rational_function_1d *r)
 

Member Function Documentation

rational_function_1d * rational_function_chebychev::get ( int  i)
virtual

Get the 1D function associated with color channel i. If no one exist, this function allocates a new element. If i > nY, it returns NULL.


The documentation for this class was generated from the following files: