ALTA  alpha
Public Member Functions | List of all members
rational_function_chebychev Class Reference

Detailed Description

This rational function uses Chebychev polynomials as the basis function for the numerator and the denominator of the rational function:

\( f(x) = \sum a_i p_i(x) / b_i q_{i}(x) \), with \( p_i = q_i\).

Chebychev polynomials can be defined using trigonometric functions: \( p_i(x) = \cos\left( i \; \mbox{acos}(x) \right)\). We use this formulation.

For more details see the addendum on Rational BRDF available at

Laurent Belcour <>

#include <rational_function.h>

Collaboration diagram for rational_function_chebychev:
Collaboration graph

Public Member Functions

 rational_function_chebychev (const alta::parameters &params, int np=0, int nq=0)
virtual rational_function_1d * get (int i)

Update the y-1D function for the ith dimension.

It will test if the 1D function provided is of the dynamic type
virtual void update (int i, rational_function_1d *r)

Member Function Documentation

rational_function_1d * rational_function_chebychev::get ( int  i)

Get the 1D function associated with color channel i. If no one exist, this function allocates a new element. If i > nY, it returns NULL.

The documentation for this class was generated from the following files: